Product Information

Flow Transmitter / Switch OMNI-CF

- Flow measurement device using the vortex measurement principle
- Analog output 4..20 mA or 0..10 V
- Two programmable switches
- Graphical LCD display, backlit, can be read in sunlight and in the dark
- Selectable units in the display
- Programmable parameters via rotatable, removable ring (programming protection)
- Electronics housing with non-scratch, chemically resistant glass
- Rotatable electronic housing for best reading position
- Designed for industrial use
- Small, compact construction
- Simple installation

Characteristics

A narrow triangular body (1), which goes through the complete cross-section of the measurement pipe, creates vortices in the medium when there is a flow (Kármán vortex street, vortex effect). The frequency of the vortex is proportional to the flow, and is detected using a piezo-sensor (2), which lies behind the triangular body. The complete unit, vortex body, and detector are designed as a plug-in unit (3), and are inserted into the pipe. Here, a lightning fast separation between measurement pipe and the complete measurement unit is possible.

The OMNI transducer located on the sensor has a backlit graphics LCD display which is very easy to read, both in the dark and in bright sunlight. The graphics display allows the presentation of measured values and parameters in a clearly understandable form. The measured values are displayed to 4 places, together with their physical unit, which may also be modified by the user. The electronics have an analog output (4..20 mA or 0..10 V) and two switching outputs, which can be used as limit switches for monitoring minimal or maximal, or as two-point controllers.

The switching outputs are designed as push-pull drivers, and can therefore be used both as PNP and NPN outputs. Exceeding limit values is signalled by a red LED which is visible over a long distance, and by a cleartext in the display.

The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so

... Professional Instrumentation

Sensors and Instrumentation

there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 ° and replaced, or completely removed, thus acting as a key.

OPTION C:

Preset Counter with external reset option, complementary switching outputs and actual value display.

OPTION C1:

Instantaneous value display with analogue output, pulse-volume output and totalizer

Technical data

Sensor	vortex principle			
Neminel wielth				
	DN 825			
Process connection	female thread G ¹ / ₄ G 1 (others available on request)			
Metering range	0.9150 l/min for details, see table "Ranges"			
Measurement accuracy	up to 50 % of full scale value: ±1 % of measured value from 50 % of full scale value: ±2 % of measured value			
Pressure resistance	PN 10 bar			
Medium temperature	0+60 °C			
Ambient temperature	-20+70 °C			
Materials medium-contact	Housing	CW614N plated, 1.4571 or POM GF		
	Connection	CW614N plated, 1.4571 or POM		
	Detector Seal	ETFE PA6T6I 40 % GF EPDM		
Materials non-medium-	Electronics housing	stainless steel 1.4305		
contact	Glass	mineral glass, hardened		
	Magnet	samarium-Cobalt		
	Ring	POM		
Supply voltage	1830 V DC			
Power	< 1 W			
consumption				
Analog output	420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ			
Switching outputs	transistor output "push-pull" (resistant to short circuits and polarity reversal) I _{out} = 100 mA max.			
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum			

Product Information

Sensors and Instrumentation

Wiring

Signal output curves

Current output

Voltage output

Other characters on request.

Ranges

G	Types	Range I/min H₂O
G ¹ / ₄	OMNI-CF-008	0.9 15 l/min
G ³ / ₈	OMNI-CF-010	1.8 32 l/min
G ¹ / ₂	OMNI-CF-015	3.5 50 l/min
G ³ / ₄	OMNI-CF-020	5.0 85 l/min
G 1	OMNI-CF-025	9.0150 l/min

Connection example: PNP NPN

connector M12x1

See separate wiring at C and C1 option in the separate descriptions.

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet. The use of shielded cabling is recommended.

Honsberg Instruments GmbH Tenter Weg 2-8 • 42897 Remscheid • Germany Fon +49 (0) 2191 - 9672 - 0 • Fax - 40 www.honsberg.com • info@honsberg.com

Product Information

Dimensions

G	DN	Types	Η	L	L1	Х	Weight* kg
G ¹ / ₄	DN 8	OMNI-CF-008	86	125	69	12.5	2.8
G ³ / ₈	DN 10	OMNI-CF-010	84	100	50		2.45
G 1/2	DN 15	OMNI-CF-015	86			14.5	2.45
G ³ / ₄	DN 20	OMNI-CF-020	88	135	85	16.5	2.85
G 1	DN 25	OMNI-CF-025	90	155	95	18.5	2.65

*Weight details for metal model. Plastic models available on request

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides freedom in the orientation of the sensor. This option simultaneously provides thermal decoupling between the two units Length of the gooseneck is 140 mm.

Handling and operation

Installation

The vortex flow meter requires a run-in length of 5..10 x D in order to achieve its specified accuracy. If deposits are to be expected, sensor and electronics should not be installed underneath. It should be ensured that the sensor is installed in the direction of the flow arrow. If the sensor is to be cleaned, the clamps should be released, and the device removed (the pipe should be pressurefree for this). It should be ensured during cleaning that the oscillating vortex body is not exposed to impact (in the moulded part there is a sensitive piezo-ceramic sensor, which can break).

Sensors and Instrumentation

1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 ° and replaced to create a programming protector.

Operation is by dialog with the display messages, which makes its use very simple.

Starting from the normal display (present value and unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1 MIN = Monitoring of minimum value MAX = Monitoring of maximum value
- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2
- Hysteresis 2
- Code
- After entering the code 111, further parameters can be defined:
- Filter (settling time of the display and output)
- Physical unit (Units)
- Output: 0..20 mA or 4..20 mA
- 0/4 mA (measured value corresponding to 0/4 mA)
- 20 mA (measured value corresponding to 20 mA)

For models with a voltage output, replace 20 mA accordingly with 10 V.

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the cursor moves to the next digit.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

Overload display

Overload of a switching output is detected and indicated on the display ("Check S1 / S2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor provides a simulation mode for the analog output. It is possible to create a programmable value in the range 0..26.0 mA at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This mode is accessed by means of **Code 311**.

Programming

The annular gap of the programming ring can be turned to positions

... Professional Instrumentation "MADE IN GERMANY" /// (C) ...

Honsberg Instruments GmbH Tenter Weg 2-8 • 42897 Remscheid • Germany Fon +49 (0) 2191 - 9672 - 0 • Fax - 40 www.honsberg.com • info@honsberg.com

Product Information

Factory settings

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using Code 989.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.

While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V, so that a wire break would also display as an alarm state at the signal receiver.

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. CF-xxx with electronics e.g. OMNI-CF-xxx 6. 1. 2. 3. 4. 5. 7. CF Е Е 10. 12 8 9. 11. OMNI-CF-S

O=Option

1.	Nominal wid	dth	
	008	DN 8 - G ¹ / ₄	
	010	DN 10 - G ³ / ₈	
	015	DN 15 - G 1/2	
	020	DN 20 - G ³ / ₄	
	025	DN 25 - G 1	
2.	Process con	nnection	
	G	female thread	
3.	Connection	material	
	Μ	CW614N plated	
	ко	1.4571	
	P Q	POM	
4	Body mater	ial	
	M	CW614N plated	
	к	1 4571	
	P O	POM GE	
5	Metering ra	nge	
υ.	015	0.9 15 l/min	
	013	1.8 32 l/min	
	050	3.5 50 l/min	
	030	5.0. 85 l/min	
	150	9.0. 150 l/min	
6	100 Seeling met		
0.	Sealing mat		
7	E Connection	EPDM for	
1.	Connection		
	E	electronics	
8.	For nomina	l width	
	008	DN 8 - G ¹ / ₄	
	010	DN 10 - G ³ / ₈	
	015	DN 15 - G ¹ / ₂	
	020	DN 20 - G ³ / ₄	
	025	DN 25 - G 1	
9.	Analog outp	out	
	1	current output 0/420 mA	
	U O	voltage output 0/210 V	
	К	without	
10.	Electrical co	onnection	
	S	for round plug connector M12x1, 5-pole	
11.	Option 1		
	НО	gooseneck	
		tropical model	
	0 0	oil-filled version for heavy duty or	
		external use	
12.	Option 2		
	C 0	Counter C	
	C1 O	Counter C1	

"MADE IN GERMANY

Professional Instrumentation

Product Information

Options

TRUMENT

Sensors and Instrumentation

Counter C (hardware and software option): Preset Counter with external reset option, complementary switching outputs and actual value display (modified wiring diagram!)

Counter C1 (software option): Instantaneous value display with analogue output, pulse-volume output and totalizer

Accessories

- Cable/round plug connector (KB...) • see additional information "Accessories"
- Device configurator ECI-1 •

